
Module
https://learn.microsoft.com/en-us/training/modules/use-imperative-dev-techniques-powerapps-c
anvas-app/1-imperative-vs-declarative

Unit 1 Imperative versus declarative development

●​ In imperative development, the focus is on how to achieve the goal.
○​ Imperative provides more flexibility because you control every step in the

process, but that means more code and more complexity.
○​ You focus on creating the sandwich in your "code". You go to the kitchen, get the

ingredients, put the sandwich together, and then send it to the user. You spend a
lot of time on the steps, but you have all of the specific functions you want to
make it exactly the way you want. No tomatoes? No problem.

○​ This is the approach you will see in languages like C# or other popular coding
languages

●​ With declarative, the focus is on getting the result.
○​ Declarative is much simpler and straightforward to use but can lack the ability

to have the complete control that you might want.
○​ The difference is now you are focused on producing the sandwich, not how to

make a sandwich. This is much less complex, but you might also run into the
issue with tomatoes. If the function you use to get the sandwich doesn't support
the option of no tomato you are out of luck. Your code may be as straightforward
as follows.

■​ GetSandwich(Kitchen, Mouth)
○​ Low-code tools like Excel use this approach to development. The focus is on

pulling data.
●​ Power Apps has capabilities for both imperative and declarative logic

Unit 2 The three types of variables in Power Apps

●​ Variables are a key driver for imperative logic in Power Apps because they allow you to
"build the sandwich" piece by piece.

●​ Power Apps has three different types of variables
○​ Global variables -- The most traditional type of variable. You use the Set

function to create and set its value
■​ Common use is to store a user's DisplayName when the app loads

○​ Context variables -- A context variable is only available on the screen where
you create it using the UpdateContext function.

■​ One example: used for functionality that controls a pop-up screen
○​ Collections -- A collection is a special type of variable for storing a table of

data
■​ Collections are available throughout your app, like global variables, and

they are created using the Collect or ClearCollect function
●​ Variables are temporary and only available to the current user in their current session

Unit 3 Global variables

https://learn.microsoft.com/en-us/training/modules/use-imperative-dev-techniques-powerapps-canvas-app/1-imperative-vs-declarative
https://learn.microsoft.com/en-us/training/modules/use-imperative-dev-techniques-powerapps-canvas-app/1-imperative-vs-declarative

●​ With Power Apps, you can show a welcome message and get the user's name in a
declarative manner by using the following formula in a Label control.

○​ "Welcome " & User().FullName
●​ A better approach would be to store that information in a global variable when the app

opens, and then reference that variable throughout your app.
○​ You could do this by Modifying the OnStart property of the app with the following

formula.
○​ Set(varUserDisplayName, User().FullName)

●​ Now for your Label control, you would change the formula to the following.
○​ "Welcome " & varUserDisplayName

●​ With a declarative mindset, you would set the Visible property for the warning icon to the
following.

○​ CountRows(Filter(InvoiceEntity, CustomerNumber = ThisCustomersNumber
And Status = "Outstanding")) > 3

●​ A better approach is only to run the complex call once, store the result in a variable, and
then use that variable to control the Visible property of each control.

○​ To do this, configure the OnVisible property of the screen to set the variable.
○​ Set(varOustandingExceeded, CountRows(Filter(InvoiceEntity,

CustomerNumber = ThisCustomersNumber And Status = "Outstanding")) >
3)

Unit 4 Contextual variables

●​ Many apps use pop-up dialog boxes to confirm things like deleting a record.
○​ A common way to implement this is to set a Contextual variable to true when the

user selects the delete button.
○​ You do that by setting the OnSelect property of the button to the following.
○​ UpdateContext({varShowPopUp: true})
○​ You then set the Visible property of the pop-up controls to varShowPopUp

●​ If you copy the controls (using Ctrl+C) to another screen, then you will have two
instances of varShowPopUp.

○​ These two instances use the same name, but can have different values.
●​ One unique behavior of the UpdateContext function is that you can declare more than

one variable at a time
○​ UpdateContext({varCount: 1, varActive: true, varName: User().FullName})

●​ To do the same thing with Global variables, you would use the following.
○​ Set(varCount, 1);Set(varActive, true);Set(varName, User().FullName)

Unit 5 Collections

●​ The most common reason for using collections is to optimize performance by reducing
calls to the same table in a data source

●​ To store a copy of the Projects table from your data source into a collection called
collectProjects

○​ Collect(collectProjects, Projects)
●​ Considerations that you need to understand about using collections

○​ The Collect function is not delegable. This means by default only the first 500
records from the data source will be retrieved and stored in the collection

○​ Changes to the data in the collection do not automatically save to the data
source

○​ When you close the app, the collection and all of its contents are removed
●​ You can also create a collection from information directly within your app

○​ This is often done to provide values for a drop-down menu or combo box and
to store large amounts of data before writing to a data source.

○​ Collect(collectColors, {Name: "Shane", FavoriteColor: "Orange"}, {Name:
"Mary", FavoriteColor: "Blue"}, {Name: "Oscar", FavoriteColor: "Yellow"})

●​ The one exception where Collections vary from tabular data sources is you cannot use
them with the Form control.

Unit 6 Additional variable concepts

●​ Sometimes you need to make a variable that points to itself
○​ This is often done when you want to either do a counter type variable where it

increments a value or you are appending a string
○​ Place the following formula on the OnSelect property of a button to set up a

counter.
■​ Set(varCounter, varCounter + 1)

○​ Next to the button put a Label, and in the Text property, put varCounter
●​ The default value of a variable will vary based on the variable type if you do not set the

default property.
○​ Text variables are ""
○​ Number variables are 0
○​ Boolean variables are false

●​ You can also store a record in the variable
○​ Set(varUser, User())
○​ You can retrieve the values of the individual columns using the dot (.) notation

●​ Variables don't automatically update
○​ For example, they can use a variable to store the number of customer

invoices using OnStart for the app.
○​ Then in the app, the user creates a new invoice. The variable doesn't

distinguish the number of invoices in the system that have changed

Unit 7 Exercise - Using the variables and collections

●​ Set the OnStart property to this formula that we're using to create a collection of
customer numbers and the associated invoice numbers

○​ ClearCollect(colCustomer,
○​ {CustomerNumber: 7470, InvoiceNumber: "INV70817"},
○​ {CustomerNumber: 4259, InvoiceNumber: "INV29595"},
○​ {CustomerNumber: 8251, InvoiceNumber: "INV74302"},
○​ {CustomerNumber: 2338, InvoiceNumber: "INV35115"},
○​ {CustomerNumber: 1524, InvoiceNumber: "INV82337"},

○​ {CustomerNumber: 1530, InvoiceNumber: "INV82338"}
○​);
○​ Set(varUserDisplayName, User().FullName)

●​ To view the collection, select the Insert tab (or + Insert from the command bar) and add
a Vertical gallery, set its Items property to colCustomer

●​ Select the Trash icon and the below formula to its OnSelect property:
○​ Remove(colCustomer,ThisItem)

●​ Press and hold Alt Key, and select the first Trash can icon.
○​ This deletes the selected row from the collection. While this process works,

you probably want to give a warning message that the row will be deleted.
●​ By employing a Contextual variable, let's create a popup warning to inform the user

about the pending deletion and give them an option to cancel.
○​ Change the OnSelect of the Trash can icon to the below:

■​ UpdateContext({varPopup:true})
●​ Set the lbl_popup Text to the below formula:

○​ varUserDisplayName & " Please click Delete to confirm deletion of
Invoice#" & " " & Gallery1.Selected.InvoiceNumber

●​ Set the Delete Button OnSelect property to the below:
○​ Remove(colCustomer,LookUp(colCustomer,CustomerNumber=Gallery1.Sel

ected.CustomerNumber));
○​ UpdateContext({varPopup:false})

●​ Set the Cancel Button OnSelect property to:
○​ UpdateContext({varPopup:false})

●​ Now let's select all of these controls together so we can group them
○​ Set the Visible property of Group1 to: varPopup

Unit 8 Module assessment

●​ 1. You are designing a Power App with a feature that requires toggling a label's visibility
based on user interactions on the same screen. Which type of variable should you use?

○​ Context variable
○​ Global variable
○​ Collection

●​ 2. A Power App user reports that a pop-up dialog box appears unexpectedly when
navigating between screens. What could be causing this issue?

○​ A collection is being used to store pop-up state
○​ A context variable is incorrectly scoped.
○​ A global variable is controlling the pop-up visibility.

●​ 3. An application needs to dynamically change its behavior based on user actions in
Power Apps. Which development methodology should be prioritized for this
requirement?

○​ Declarative development methodology
○​ Test-driven development methodology
○​ Imperative development methodology

●​ 4. You are tasked with reducing network traffic in a Power App by minimizing repetitive
data source queries. Which approach would you take?

○​ Rely on context variables for all data operations.
○​ Store frequently accessed data in collections.
○​ Use global variables for storing all dynamic data.

●​ 5. A developer needs to store a list of items temporarily within a screen in Power Apps.
What type of variable should be used?

○​ Global variable
○​ Context variable
○​ Collection variable

●​ 6. A developer chooses to write detailed instructions for app functionality, while another
developer uses a simple formula to achieve the same functionality. What does this
choice illustrate about development methodologies in Power Apps?

○​ Both developers are using declarative approaches.
○​ Both developers are using imperative approaches.
○​ The first developer is using an imperative approach, while the second is

using a declarative approach.
●​ 7. Which type of variable should be used to store and manage a table of data that is

frequently updated within the app?
○​ Collection variable
○​ Context variable
○​ Global variable

●​ 8. Which characteristic is unique to declarative development methodologies in Power
Apps?

○​ Focus on the end result rather than the steps to achieve it
○​ Ability to control each step of the process
○​ Use of complex programming languages like C#

●​ 9. A developer needs to create a pop-up confirmation dialog that warns users before
deleting a record. Which type of variable should be used to manage this pop-up
visibility?

○​ Global variable
○​ Collection variable
○​ Context variable

